Fuzzy C-means Model and Algorithm for Data Clustering
نویسندگان
چکیده
منابع مشابه
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملA Fuzzy Clustering Model of Data and Fuzzy c-Means
The Multiple Prototype Fuzzy Clustering Model (FCMP), introduced by Nascimento, Mirkin and Moura-Pires (1999), proposes a framework for partitional fuzzy clustering which suggests a model of how the data are generated from a cluster structure to be identi...ed. In the model, it is assumed that the membership of each entity to a cluster expresses a part of the cluster prototype re‡ected in the e...
متن کاملFuzzy c-means clustering algorithm for directional data (FCM4DD)
Cluster analysis is a useful tool used commonly in data analysis. The purpose of cluster analysis is to separate data sets into subsets according to their similarities and dissimilarities. In this paper, the fuzzy c-means algorithm was adapted for directional data. In the literature, several methods have been used for the clustering of directional data. Due to the use of trigonometric functions...
متن کاملUsing fuzzy c-means clustering algorithm for common lecturer timetabling among departments
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Southeast Europe Journal of Soft Computing
سال: 2012
ISSN: 2233-1859
DOI: 10.21533/scjournal.v1i1.80